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Abstract: 
Cryptocurrencies are ruling the world market these days. Recently, the most famous 

cryptocurrency ‘Bitcoin’ has raised its market share to more than 200 billion USD. More and 

more people are investing in Bitcoins and are using it as a way of transaction. Currently, the 

Bitcoin prices (BTC) are sailing as high as 7000 USD. In this report, we have analysed the 

BTC vs USD data from 18th July 2010 to 4th Nov 2016 using different Time Series techniques. 

This time series method may be used to forecast Bitcoin or any other cryptocurrency prices in 

the future.  

 

Introduction:  
In this project, we have tried to analyse the prices of Bitcoin in a 6+ years window. We are 

working on the logarithmic data of BTC vs USD. The trend and seasonality of the logarithmic 

data are analysed, estimated and are removed. Our fitted model is an S-ARIMA model, in 

which we remove trend and seasonality making it an effective ARMA model. We estimate the 

order of this ARMA model and its coefficients such that it best fits our data.  

 

Data: 
Xt: Historical Time Series of Bitcoin prices in USD from 18/07/2010 to 04/11/2016. 

Frequency: Daily (No. of data points: 2667) 

Define: Yt = log(Xt) 

Following is the graph of Yt vs time: 

 



Estimation and Elimination of trend: 
We have used the Relative Ordering Test for testing the presence of trend component. The 

results of Relative Ordering Test are: (Here d is the order of differencing) 

 

For d=0, Computed value of Q/E(Q) = 0.23 (this shows rising trend) 

For d=1, Computed value of Q/E(Q) = 0.9901 

For d=2, Computed value of Q/E(Q) = 0.9971 

 

Hence, the trend gets eliminated for d=1, since at d=1, Q from the data equals the expected 

value of Q, indicating the acceptance of null hypothesis and the acceptance of no trend. 

Hence we conclude that the trend is linear. 

 

We have used method of differencing (order of differencing, d=1) for elimination of trend. 

Hence, Y(t) – Y(t-1) = (1-B)Y(t) = ˅Y(t) 

Following is the graph of Yt vs time after the elimination of trend: 

 
Estimation and Elimination of Seasonality: 
We have used Friedmann’s test for testing the existence of seasonality in the time series. We 

plot a graph with the value of test statistic and the value of chi square (with r-1 degrees of 

freedom on the y axis and different possible values of seasonality (d) on x axis.  



 
We decide the period of seasonality as the one at which the test statistic value is greater than 

the chi square value. At this value of d and at all the multiples of d, if the value of test 

statistic is greater than chi square, then we confirm d to be the period of seasonality for this 

time series. For this data, the period of seasonality comes out to be equal to 120 days.  

The results of Friedmann’s test are: 

Test Statistic      Chi Square              d 

146.5674            71.1298                  120 

277.1376       224.1594        240 

405.2435       354.0829        360 

 

Graphically, the seasonal component is: 

 



We have estimated the seasonal component as follows: 

Since the seasonality is of order d=120 days, we take average of X1, X121, X241… and 

conclude it to be the seasonal component corresponding to X1, X121, X241.... Similarly we 

take average of X2, X122, X242…. and conclude it to be the seasonal component 

corresponding to X2, X122, X242…..  

 

In the Friedmann’s test, if the value of test statistic becomes equal to the value of Chi 

Square, then we say that seasonality is not present. Hence after removal of seasonality, we 

again apply Friedmann’s test for existence of further seasonality and the results obtained 

prove that no further seasonality is present since test statistic values were close to chi square 

values. 

 

After estimation of this seasonal component corresponding to all X’s, we eliminate it from 

the data to make it completely random.  

After trend and seasonality elimination, the data looks like: 

 

 

Check for stationarity: 
We check the above obtained random data for existence of mean and covariance stationarity.  

For mean stationarity, we take different intervals of same length and calculate the mean for 

all those intervals of same length.  

 

The graph below shows that this random process generated in mean stationary, since the 

variation in mean is of the order 10^-3 which can be neglected. 



 
 

For covariance stationary, we select a lag and fix the length of an interval. We measure 

covariance between these two intervals of fixed length. Similarly we measure covariance 

between another two intervals of same length and for the same value of lag.  

 

For lag = 2 and lag = 8, the covariance graphs are as follows: 

 



 

We have plotted this graph for various values of lag i.e lags from 1 to 10 and with interval of 

size 500. But for all the values of lags the variation in the ACF is considerable and hence 

cannot be neglected. As the values of covariance are not same for different same length 

intervals with the same lag, this proves that the random component obtained after removal of 

trend and seasonality is not covariance stationary and hence not weak stationary.  

 

Model Selection 
For selecting the model fits our data, we plot the Auto-Correlation function for the data. 

 



Since ACF tails off as lags increase, we can conclude that ARMA model can be fitted to this 

data. 

The plot of PACF is: 

 

We observe that PACF also tails off as lags increase, hence an ARMA(p,q) model can be fitted. 
 

Order Estimation 
For estimating the order of ARMA process i.e., for estimating the values of p and q, we have 

used Bayesian Interpretation Criterion. The range of p for estimation is kept to be [1,20] and 

the range of q for estimation is kept to be [1,20]. For all possible different combinations of p 

and q selected from this range we calculate the values of BIC. The combination of p and q 

for which the value of BIC is minimum is the order of ARMA.  

The estimated order of ARMA process is (7,6) (p=7, q=6). The process is ARMA(7,6). 

 

Parameter Estimation 
For estimation of parameters (coefficients) of this ARMA(7,6) model, we use Conditional 

Maximum Likelihood Estimator.  

 

Hence the forecasted value of X at some future time t is: 

 

Xt = -0.744X(t-1) + 0.0165X(t-2) + 0.1366X(t-3) + 0.044X(t-4) + 0.421X(t-5) + 0.6946X(t-

6) + 0.026X(t-7) + 𝞊t + 0.792𝞊(t-1)  - 0.0107𝞊(t-2) -0.167𝞊(t-3) -0.054𝞊(t-4) - -0.362𝞊(t-5) -

0.59𝞊(t-6)                                                                  

 where 𝞊t ~ WN(0, 0.00058) 



We solved the polynomial of AR part of the ARMA process to find roots of that polynomial, 

which came out to be greater than 1, hence we prove that the process indeed is non 

stationary.  

 

Conclusion 
From this project, we have learnt how to handle real life data esp; financial data and that too 

the most famous cryptocurrency ‘Bitcoin’ which is too unpredictable. The raw BTC vs USD 

data was so aleatory that we decided to use the logarithm of it. It solved our purpose, by 

having some trend and seasonality. We also learnt to estimate and eliminate trend and 

seasonality from a real data. We have used classical ARIMA to find that the log of the BTC 

vs USD prices follow an ARIMA(7,0,6) which is same as ARMA(7,6). Thus, we have an 

estimate of the variation of the data for which we may use this model to predict the future 

Bitcoin prices providing no market booms or crashes. Our designed model forecasts the 

value of Bitcoin price at some future time t. 

 

 


